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Abstract

Recommender systems have been strongly researched within the last decade. With the emer-
gence and popularization of social networks a new field has been opened for social recommen-
dations. Introducing new concepts such as trust and considering the network topology are
some of the new strategies that recommender systems have to take into account in order to
adapt their techniques to these new scenarios.

In this thesis a simple model for recommendations on twitter is developed to apply some of
the known techniques and explore how well the state of the art does in a real scenario. The
thesis can serve as a basis for further social recommender system research.
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Chapter 1

Introduction

1.1 The paradox of choice

The explosive growth and variety of information available on the Web and the rapid intro-
duction of new services (blog feeds, buying products, product comparison, auction, etc.) fre-
quently overwhelmed users, leading them to make poor decisions. The availability of choices,
instead of producing a benefit, started to decrease users’ comfort. It was understood that
while choice is good, more choice is not always better. Indeed, choice, with its implications
of freedom, autonomy, and self-determination can become excessive, creating a sense that
freedom may come to be regarded as a kind of misery-inducing tyranny [26]

With the recent emerging of social networks internet users became directly interconnected
to share all kind of information (statuses, professional profiles, videos, news, etc). Users
connect to other users to share information between them. As the number of friends grows,
the amount of information received by a user will grow proportionally. This aggravate the
information overload problem as users are passive receivers of information generated by their
set (sometimes hundreds) of friends.

Social networks are like rooms where everybody is talking. Someone, or somewhat, has
to advice users on who to at every moment. Or even bring the user some piece of interesting
information that has been said in other room. Information with no interest for the user should
be muted, and high value information should be showed in first place.

1.2 Recommending in social networks

Recommender Systems are software tools and techniques providing suggestions for items of
interest to a user. The suggestions provided are aimed at supporting their users in various
decision-making processes, such as what items to buy, what music to listen, or what news
to read. Recommender systems have proven to be valuable means for online users to cope
with the information overload and have become one of the most powerful and popular tools
in electronic commerce. Correspondingly, various techniques for recommendation generation
have been proposed and during the last decade, many of them have also been successfully
deployed in commercial environments.

Evidence suggests that people tend to rely more on recommendations from their friends
than on recommendations from similar but anonymous individuals [27]. Thus, it makes sense
to have the ratings of a recommender system influenced by the ratings of the user’s friends.

3



Recommending systems on social networks (known as Social Recommender Systems) face
three main challenges: first, they have to learn to rank the information coming from a user’s
friends. Second, they have to discover information from sources other than a user direct
friends. Third, they have to decode information provided by the structure of the network
(friend relationships) and user interactions (i.e.: trust).

Most recommendation techniques consider that the system has all the potentially useful
information (items, users and ratings). Amazon stores in its databases all the information
about available books, registered users, and past interactions such as purchases or book rat-
ings. Facebook can place personalized ads into a user interface based on complete knowledge
of the user’s activity in Facebook. But sometimes we have only a limited access to the data,
since we are not the owners. In these cases, we must use some crawling technique to get those
subsets of data that will be more useful to the task at hand.

1.3 Aims of the thesis

Social recommender systems need new techniques to deal with recommendations on social
network scenarios. Several contributions have been made to the field. One of the aims of
this thesis is to contribute to the discussion of how to compute trust from interactions on a
social network where there is no explicitly annotated information. This thesis explores how
to tackle this issue in the Twitter1 social network.

The desired utility of our trust metric is to enhance recommendations of tweets. To eval-
uate trust-based recommendations we propose an architecture for social recommendations.
Here we explore different techniques at three different levels: crawling, trust propagation and
text mining. Crawling aims to get the optimum set of neighbors for every user, in such a
way that the value of items published in this neighborhood is maximized. Trust and trust
propagation aim to compute trust between pairs of users and use this information to enhance
recommendations with social information rather than just using content-based recommenda-
tions. Text mining focuses on how to encode tweets and how to compute similarities to use in
a content-based recommendation of tweets. We explore the state of the art techniques that
can be useful in a such a scenario and study how to put them together to build a recommender
system that filters and finds useful information for the user.

The main goal is not to get astonishing results astonishingly precise results for recommen-
dation, as this is likely to be difficult with partial information, but to get a first intuition on
what pieces of existing technologies and what techniques are more suitable for recommend-
ing items in social networks. The thesis can serve as a basis for further social recommender
system research.

A paper on the results of this thesis have been accepted for presentation at the ASONAM
20122 workshop ”International Workshop of Social Knowledge Discovery and Utilization”3

1www.twitter.com
2http://www.asonam2012.etu.edu.tr/
3http://people.cs.aau.dk/ rpan/skdu/
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Chapter 2

Background

Recommender Systems typically apply techniques from other neighbor areas. The most im-
portant of these areas are data mining and machine learning, which provide the core methods
of a recommender. This chapter is an overview of the main techniques that are to be consid-
ered when designing a recommender system. The sections that follow do not correspond to
the real classification of areas (Text Mining can be considered a subarea of Data Mining or
Natural Language Processing , and classification techniques are in between Machine Learning
and Data Mining. Even the relationship between Data Mining and Machine Learning is a
matter of discussion into which we do not want to enter in this document). However, they
are grouped as toolboxes, where a toolbox would contain the techniques necessary to face a
part of the recommendation problem (preprocessing, machine learning, dealing with textual
items, and global strategy of the recommender).

2.1 Data mining

In this section two different problems are explained: the first one is how to compare items.
No matter whether the recommender strategy is to look at what similar users did in the past
(collaborative filtering) or what are similar items to the ones that a user bought (content
based) at some point we will need to choose a similarity measure or make our own. The second
one is reduction of dimensionality. The curse of dimensionality is a well known problem in
machine learning. Every item is represented as a set of features that can be considered as a
point in a n-dimensional space, where n corresponds to the number of features that we use
to represent the items. As the number of features (dimensions) increases, the vector space
gets more sparse and it makes some tasks (i.e.: clustering) harder. Note that when dealing
with text items, where often every word corresponds to a different feature, this problem gets
worse.

2.1.1 Similarity measures

Recommender systems usually face a problem of computing similarity between users (or
items). The more similar two users are, the more likely it is that a new item liked by one of
these users is going to be liked by the other. Different similarity measures (distances) can be
applied to a problem, and the best choice depends on the scenario. One of the most common
similarity measure is Euclidean Distance:
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d(x, y) =

√√√√ n∑
k=1

(xk − yk)2 (2.1)

Euclidean distance can be seen as an specific form of the generalized Minkowsky distance
with r = 2 (L2-norm). Minkowsky distance is a generalized metric for Euclidean spaces with
this generalized form:

d(x, y) = (

n∑
k=1

|xk − yk|r)
1
r (2.2)

With r = 1 we get a Manhattan distance, or L1.

d(x, y) =

n∑
k=1

|xk − yk| (2.3)

With r =∞ we get a Tchebychev distance, Maximum Metric, or L∞, where the distance
between two vectors is the greatest of their differences along any dimension:

d(x, y) = max
k
|xk − yk| (2.4)

Another common approach is consider distance as the cosine of the angle between two
vectors of attributes.

cos(x, y) =
xy

||x||||y||
(2.5)

Cosine distance is useful when items are documents represented as bags-of-words. As it only
considers the angle between the documents, term vectors can be normalized to the unit sphere
for more efficient processing.

Pearson correlation is useful when we need to avoid rating inflations. Imagine we have a
movie recommender systems. We can expect two users with same preferences rate a set of
movies in a similar way. But if one user is more “optimistic” her ratings will be a bit inflated
with respect to the other. To compensate this inflation and focus only on the normalized
similarity between two user ratings, we can use Pearson correlation:

Pearson(x, y) =
σxy
σxσy

(2.6)

Notice that Pearson correlation does not work if one of the users gives to every item the same
rating, as that implies σ = 0.

Finally, Mahalanobis distance is similar to Euclidian distance, but it introduces the co-
variance matrix σ into the formula:

d(x, y) =
√

(x− y)σ−1(x− y)T (2.7)

Deciding which similarity distance to use depends on the scenario and we will usually have
to test different metrics.
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2.1.2 Reducing dimensionality

It is common in data mining to have instances with a large set of attributes each, which
means that instances live in a sparse high-dimensional space. Instances are very far from each
other, and that makes it hard for machine learning algorithms to learn similarity patterns
as instances can be close in some dimensions but far in others. This is called the curse of
dimensionality. To overcome this problem different dimensionality reduction techniques can
be applied to the dataset. Some of them will directly find non-relevant attributes to delete
(feature selection). Others will perform this by first projecting the space into a less sparse
one and then discarding those dimensions where less information is contained.

In the following sections, we will review two of theses projection techniques, known as
Principal Component Analysis (PCA) and Single Value Decompositions (SVD).

Principal Components Analysis

Principal Component Analysis (PCA) is an statistical method based on the following as-
sumption: the more variance a dimension contains, the more informative it is. PCA projects
the original space into a new one that maximizes the variance of the first dimensions (or
components). Thus, the first component is the most informative, the second component is
the second most informative, and so on. We can reduce the dimensionality of the data by
neglecting the less informative components. A rule of thumb threshold is used to decide which
dimension we should start neglecting from. Note that PCA creates a linear combination of
the original space, that is, it performs a rotation of the axis.

Figure 2.1: PCA analysis of a two-dimensional set of points. The principal components
derived are u1 and u2. The variance contained in each component is relative to the information
that it contains. (source: [22][p. 45])
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Single Value Decomposition

Single Value Decomposition (SVD) [10] is a matrix factorization method that decomposes a
matrix M to a form:

Mn×m = Un×rΣr×rV
T
r×n (2.8)

where U and V are orthonormal basis and Σ is a non-negative diagonal matrix. The diagonal
values of Σ are known as the singular values of M and are sorted in decreasing order. By
applying Single Value Decompositions we find a dimensional feature space where the new
features represent “concepts” and the strength of each concept in the context of the collection
is computable. After performing a Single Value Decomposition to a matrix M we can reduce
the dimensionality of M by truncating the singular values (as well as U and V T ) at a given
k. The truncated SVD is a representation of the underlying latent structure in a reduced
k-dimensional space, which generally means that the noise in the features is reduced.

Figure 2.2: An illustration of a Singular Value Decomposition: an item × features matrix
can be decomposed into three different ones: an item × concepts, a concept strength, and a
concept × features (source: [22] p. 46)

The main difference with PCA, and its advantage, is that SVD not only performs a rotation
but an scaling as well. Because SVD allows to automatically derive semantic “concepts” in
a low dimensional space, it can be used as the basis of latent-semantic analysis, a popular
technique for text classification.

2.2 Classification

In this section we review some of the most important classification techniques often applied
to text.

Nearest Neighbors

Nearest neighbors classifier (kNN) [5] finds the k closest points to the one to be classified,
and then assigns the class label considering the class labels of these nearest-neighbors. The
underlying idea is that if a record falls in a particular neighborhood where a class label is
predominant it is because the record is likely to belong to that same class. More formally,
and implicitly, kNN is a non-parametric density estimator, that is, a method that infers the
probability density function behind each one of the classes that generated the population.
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Knowing these densities and given a new instance it is straightforward (using Bayes’ theorem

and considering the common approximation for density estimation p(x) ≈ (K/n)
V where V is

the volume surrounding x, n is the total number of examples and K is the number of neighbors
inside V ) a the volume that contains K points is the number of points inside ) to calculate
the probability of this instance belonging to each class. Given Ki neighbors belonging to class
Ci from a total number of K neighbors, the probability of class membership can be expressed
as:

p(Ci|x) =
p(x|Ci)p(Ci)

p(x)
=

p(x,Ci)
m∑
j=1

p(x,Cj)

≈ Ki/n

V
m∑
j=1

Kj/n
V

=
Ki

m∑
j=1

Kj

=
Ki

K
(2.9)

thus we can classify a new instance by a majority vote of its neighbors, with the instance
being assigned to the predominant class amongst its K nearest neighbors.

Nearest neighbors can be also used for regression, by simply assigning the property value
for the object to be the average of the values of its k nearest neighbors. Nearest Neighbors is
the base algorithm underlying Collaborative Filtering recommendations.

Decision Trees

Decision trees are classifiers in the form of tree structures. In its simplest form, a decision
tree is a tree in which each non-leaf node denotes a test on an attribute of cases, each branch
corresponds to an outcome of the test, and each leaf node denotes a class prediction (see
Figure 2.3). Although every non-leaf node is created after a decision on the value of a single
attribute, these nodes can also bee seen the conjunction of the features (and their values)
of the parent nodes. Because of this, decision trees are a very transparent and visual model
to understand how instances are classified. Most decision tree induction algorithms work
by splitting the original set of instances into subsets based on an attribute value test. This
process is repeated on each derived subset in a recursive manner. This process stops once all
observations belong to the same class to the same class, or some other impurity criterion is
satisfied. For practical reasons, however, most decision trees implementations use pruning by
which a node is no further split if its impurity measure or the number of observations in the
node are below a certain threshold. There are many algorithms for decision tree induction:
CART, ID3 and C4.5 to mention the most common. Decision trees may be used in a model
or in a content based approach for a recommender system.

Bayesian Classifiers

A Bayesian classifier [7] is a probabilistic classifier based on parametric density estimations. It
is based on the definition of conditional probability and the Bayes theorem. The probability
of a class given the data (posterior) is proportional to the product of the likelihood times the
prior probability of the class (or prior). The prior specifies the a priori belief in the model
before the data was observed. The goal is to find the class Ck that maximizes the posterior
probability.

The probability of an item d being in class c is computed as:

P (c|d) ∝ P (d|c)P (c) = P (t1, ..., tk|c)P (c) (2.10)

where tk is the k-est attribute of instance d. To simplify the computation of the model, a very
common assumption is made of assuming the probabilistic independence of the attributes.
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Figure 2.3: An example of a decision tree for purchase assessment

When this assumption is made the model is called a Naive Bayes, and the formulation is:

P (c|d) ∝ P (c)
∏

1≤k≤nd

P (tk|c) (2.11)

Bayesian classifiers are particularly popular for content-based recommender systems.

Support Vector Machines

The goal of a Support Vector Machine (SVM) classifier [4] is to find a linear hyperplane
(decision boundary) that separates positive and negative instances in such a way that the
margin is maximized. For instance, if we look at a two class separation problem in two
dimensions like the one illustrated in figure, we can easily observe that there are many possible
boundary lines to separate the two classes. Each boundary has an associated margin. The
rationale behind SVM’s is that if we choose the one that maximizes the margin we are less
likely to misclassify unknown items in the future. Given a training set, it seems that we would
found a good fit to the training data if we can find a vector w so that wTx(i) � 0 whenever
y(i) = 1 and wTx(i) � 0 whenever y(i) = 0 since this would reflect a very confident set of
classifications for all the training examples.

Let (x(i), y(i)) be an input feature vector and its label. SVM proposes to find a vector w
such that:

y(i)(wTx(i) + b) ≥ 0 (2.12)

that is, we want to find a vector such that makes the product (wTx(i) + b) to be of the same
sign that y(i). Moreover, the greater this product is, the more confident we will be. This
product is the functional margin. The functional margin of the training set is the minimum
functional margin of its samples. Note that if we increase the size of the hyperplane to 2w and
2b the final classification will remain unchanged while the functional margin will artificially
increase. As we are can arbitrarily increase the confidence of the classification it does not
seem a good idea. To avoid this, we normalize w. Now we can pose the following optimization
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problem:
max
w,b

γ s.t. y(i)(wTx(i) + b) ≥ γ, ∀i

||w|| = 1

Solving this equation problem is not trivial and requires to transform it to a Quadratic

Figure 2.4: Illustration of support vectors (source: [22][p. 56])

Programming problem.
SVM are very popular to classify text, as they are very robust under high dimensional

documents. However, if the input set is not linearly separable the SVM classifier will fail.
Kernel methods try to solve this problem. The idea of Kernel methods is to map the input
features to a new space where the instances are linearly separable. If this new space satisfies
some conditions there will be a duality between both spaces and thus classifications in the
second space will still be valid in the original one. We omit details here.

2.3 Text mining

Vector space models

The Vector Space Model is the basic methodology proposed by Information Retrieval re-
searchers for representing text corpora. It reduces each document in the corpus to a n-
dimensional space dj = {w1j , w2j , ..., wnj} where each dimension wi corresponds to the degree
of association between the document and the corresponding term from an overall vocabulary
T = {t1, t2, ..., tn}. The vocabulary is built from the document collection by applying some
standard operations, such as tokenization, stopwords removal, and stemming. To limit the
number of dimensions the vocabulary is often truncated by dismissing the less frequent words.
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The value of each dimension is a real number that can be computed in several ways.
In the popular tf-idf scheme [25], for each document in the corpus, a count is formed of the
number of occurrences of each word (term frequency). After suitable normalization, this term
frequency count is multiplied by an inverse document frequency count, which measures the
number of occurrences of a word in the entire corpus (generally on a log scale, and again
suitably normalized). The end result is a term-by-document matrix whose columns contain
the tf-idf values for each of the documents in the corpus. tf-idf identifies how discriminative
is a word in a document, which makes it useful for search engines.

Latent Semantic Analysis

While vector space techniques have some appealing features - e.g.: when used with tf-idf to
identify discriminative words- they provide a small capability for reducing dimensionality and
reveal little about inter or intra document statistical structure. To address these shortcomings,
some techniques such as Latent Semantic Analysis (or Indexing) have been proposed.

The key idea of Latent Semantic Analysis (LSA) [16] is to map high-dimensional count
vectors, such as the ones arising in vector space representations of text documents, to a lower
dimensional representation in a so-called latent semantic space. As the name suggests, the
goal of LSA is to find a data mapping which provides information well beyond the lexical
level and reveals semantical relations between the entities of interest. Due to its generality,
LSA has proven to be a valuable analysis tool with a wide range of applications

The information derived by LSA are not simple frequencies or co-occurrence counts, but
“latent semantic” concepts that are often much better predictors of human meaning than are
other surface level contingencies. A way to think of LSA is that it represents the meaning of
a word as a kind of average of the meaning of all the passages in which it appears, and the
meaning of a passage as a kind of average of the meaning of all the words it contain.

To compute LSA in text, the first step is to represent the text as a matrix in which each row
stands for a unique word and each column stands for document. Each cell contains the word
frequency in that document (see original text in Figure 2.5 and its matrix representation
in Figure 2.6). Sometimes it is good to apply a preprocess to these cells to reflex a more
relevant information rather than the simple word count . Next, LSA applies singular value
decomposition (SVD) to the matrix. In SVD, a rectangular matrix is decomposed into the
product of three other matrices (see Figure 2.7). One can reduce the dimensionality of
the solution simply by deleting smallest coefficients in the diagonal matrix. After reducing
dimensionality we can reconstruct the original space by multiplying the truncated factors (see
Figure 2.8 that shows the reconstruction of the original matrix after truncating its factorized
form after the second component). What we have is a matrix that looks like the original one
but with smoothed values. We expect this new matrix to capture more semantic information
than the original one.

Latent Dirichlet allocation

LDA [2] is a bayesian generative model based on three hierarchical levels. Each item of a
collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in
turn, modeled as an infinite mixture over an underlying set of topic probabilities. LDA was
first presented as a graphical model for topic discovery. It allows sets of observations to be
explained by unobserved variables that explain the word composition of the document. For
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Figure 2.5: Example of documents set

Figure 2.6: Term frequency matrix

example, if observations are words collected into documents, it posits that each document is
a mixture of a small number of topics and that each word’s creation is attributable to one of
the document’s topics.

Each topic is a distribution over words. Each document is a mixture of topics. Each word
is drawn from one of these topics. Figure 2.9 shows how this layers affect the content of the
final document. But as shown in Figure 2.10, in reality, we only observe the document and
its words. The other structures are hidden variable that must be inferred.

In LDA we must explicitly choose two parameters. The Dirichlet parameter controls the
shape of the distributions and hence the likelihood of a topic being selected. Each topic has
also its own parameter, a greater value implying a more probable topic. The exchangeable
Dirichlet distribution requires all parameters to be equal, leading to a set of topics having
the same likelihood for all topics. Small values lead to only a few topics allocated to each
document. In the other hand, we need to infer the per-word topic assignment zd,n, the per-
document topic proportions θd and the per-corpus topic distributions βk.

Figure 2.11 shows the graphical model of LDA.
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Figure 2.7: SVD Factorization of the original matrix

Figure 2.8: Final recomposition (source [15])

2.4 Recommender systems

With the popularization of e-commerce and many internet services where users “consume”
items such as news, blogs or music, appeared the demand of new services that help users to
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Figure 2.9: Illustration of support vectors

Figure 2.10: Illustration of support vectors

Figure 2.11: Illustration of support vectors

decide between a overflow of choices. From the point of view of the provider, recommendation
engines can increase user satisfaction and company benefits by increasing the number of
purchases.

In order to implement its core function, identifying the useful items for the user, a recom-
mender system must predict whether an item is worth recommending. To do this, the system
must be able to predict the utility of the items, or at least compare the utility of some items,
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and then decide what items to recommend based on this comparison.
Recommender systems emerged a decade ago and many techniques have been proposed

and tested in different real scenarios to recommend different kinds of items that range from
people to songs. In the next sections a brief description is given on the main families of recom-
mendation techniques: collaborative filtering, content-based and trust-based. In collaborative
filtering the algorithm bases its recommendations on other users preferences. These methods
are easy to implement and require no knowledge on the items. Content-based techniques
look at some features of the items to understand deeper what is what makes a user like or
dislike an item. It requires a previous feature extraction that sometimes has to be done by
experts (e.g Pandora recommend songs based on user feedback and song features extracted
by a group of musicians). Finally, trust-based recommendations are applied when a social
network or some sort of interactions between users can be inferred. These systems tune classic
techniques adding trust information which is explicitly given by users or implicitly computed
by trust computation algorithms.

2.4.1 Collaborative Filtering recommenders

Collaborative filtering (CF) is a popular method that makes recommendations based on sim-
ilarity between users. Similarity is here measured in terms of the distance between two user
vectors. A user vector contains opinions on every item. It can be boolean (liked it or not,
bough it or not) or numeric (item ratings). Various distance metrics can be applied, e.g.
Pearson correlation or cosine similarity. Collaborative filtering provides the user with the
“best bets” she will most likely be interested in, either one single item or a “ranked list of
items” – usually referred as top-N items.

Recommender systems based on collaborative filtering can provide the user with unex-
pected but fitting recommendations that do not have anything in common with the other
rated items. Unlike content-based approaches, which use the content of items previously
rated by a user u, collaborative (or social) filtering approaches rely on the ratings of u as well
as those of other users in the system. The key idea is that the rating of u for a new item i is
likely to be similar to that of another user v, if u and v have rated other items in a similar
way. Likewise, u is likely to rate two items i and j in a similar fashion, if other users have
given similar ratings to these two items.

Collaborative approaches overcome some of the limitations of content-based ones. For
instance, items for which the content is not available or difficult to obtain can still be recom-
mended to users through the feedback of other users. Finally, unlike content-based systems,
collaborative filtering ones can recommend items with very different content, as long as other
users have already shown interest for these different items. This facilitates the exploration of
items in what is known as “the Long Tail” [1].

Collaborative filtering methods are commonly grouped in two general classes: memory
and model-based methods. In memory-based collaborative filtering (also known as “lazy
learning”) the user-item ratings stored in the system are directly used to predict ratings for
new items without previous training. The model-based approach, on the other hand, first
builds a model out of the user-item interaction database and then uses this model to make
recommendations.
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Memory based

Memory based models are mostly based on neighborhood ratings. These can be either user-
based or item-based. User-based methods predict the rating rui of a user u for a new item i
using the ratings given to i by users most similar to u, called nearest-neighbors. Suppose we
have for each user v 6= u a value wuv representing the preference similarity between u and v.
The k-nearest-neighbors (k-NN) of u are the k users with the highest similarity to u that have
rated item i. We denote these users by Ni(u). The predicted rating rui can be estimated as
the average rating given to i by these neighbors. More similar neighbors should be weighted
more. We can write this prediction as:

r̂ui =

∑
v∈Ni(u)

wuvrvi∑
v∈Ni(u)

|wuv|
(2.13)

where similarity wvu can be computed by methods like the ones described in Section 2.1.1.
Users rate items from a personal point of view, and there is no a absolute scale. E.g,

rating movies on a 0-5 scale, a user u can consider a 3 to be an average movie and a user b
can consider a 3 to be a good movie but not a masterpiece. To normalize this differences one
can use Pearson correlation as similarity measure. Another popular approach is considering
the mean-centered prediction:

r̂ui = ru +

∑
v∈Ni(u)

wuv(rvi − rv)∑
v∈Ni(u)

|wuv|
(2.14)

The same methods can be applied swapping users and item. Note that, apart from changing
the perspective and maybe the final outcome of the recommender, our data will become more
or less sparse and will increase or decrease the time of computations.

Applying collaborative filtering to classification instead of regression is straightforward.
Now the task is to find the class that maximizes:

vir =
∑

v∈(N)i(u)

I(rvi = r)wuv (2.15)

where I is the identity function and is 1 when the expression is true and 0 otherwise.

Model based

In contrast to neighborhood-based systems, model-based approaches use the user-item matrix
to learn a predictive model for every user. The general idea is to use columns of the matrix
as attributes and the one corresponding to the target user as output. The model is trained
using those items that have been rated by the target user, and later used to predict ratings of
for new items. Model-based approaches can use some classification (or regression) methods
such as Bayesian Clustering [3] or Support Vector Machines [11].

2.4.2 Content-based recommenders

Content-based recommendation systems learn from some features of the items to recommend
similar items to those liked from the target user in the past. Features can be automatically or
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manually extracted. When manually extracted, these systems need a group of experts in the
field (e.g: music) to decide which features are the most relevant ones and to manually fulfill
them for every item. Items are then represented as feature vectors, from where the system
can create a profile for the target user. The use of machine learning to model the user profile
is very popular. This way, the tasks can be mapped into a classical machine learning task
with a set of items and their rating.

When items are textual, capturing the information laying in the text is a big challenge
and simple bag-of-words is often not enough, as the model is superficial and does not capture
most of the semantics on the text. Sections 2.3 shows some of the main techniques to deal
with text, although other approaches such as the use of ontologies are also popular.

A technique to compute user profiles when items are textual, used in several content-based
recommender systems, is the Rocchio algorithm [23], a technique to get relevance feedback.
This technique refines the user profile incrementally every time this user rates a new text
item. The algorithm creates a prototype vector ~ci =< w1i, ...wNi > for every class where
words are weighted according to its positive or negative relevance in the examples:

wki = β
∑

dj∈POSi

wkj

|POSi|
− γ

∑
dj∈NEGi

wkj

|NEGi|
(2.16)

where ωkj is the TF-IDF weight of the term k in document dj , POSi and NEGi are the set
of positive and negative examples in the training set for the specific class cj , β and γ are
control parameters that set the relative importance of positive and negative examples.

Content-based filtering provides some advantages compared to collaborative filtering.
First, when there is no much information on other users preferences (neighbors) the qual-
ity of the recommender is not affected. Second, depending on how we process the content
and the recommendations (e.g: decision trees) the system can provide an explanation on why
an item is being recommender. Third, a new item can be recommended immediately even if
any user has rated it, as soon as its features are extracted. On the other hand, content-based
recommender systems get easily stuck in ”neighbor” items and do not find items that, even
if different, the target user may like. Finally, feature extraction, while powerful, is a critical
task that will have an important impact on the quality of the recommendations, and domain
knowledge is often needed.

2.4.3 Trust-based recommenders

Trust-based recommender systems (also known as trust-aware, social or community-based
recommender systems) follow the epigram “Tell me who your friends are, and I will tell you
who you are”. Evidence suggests that people tend to rely more on recommendations from
their friends than on recommendations from similar but anonymous individuals [27]. This
observation, combined with the growing popularity of open social networks, is generating
a rising interest in community-based systems or, as or as they usually referred to, social
recommender systems. This systems acquire information about the social relations of the
users and create a trust model that shapes the observed information. The recommendation
takes into account the trust between users and can be combined with collaborative filtering
or content-based filtering strategies. Trust can be used, in a similar way to that of other
similarity measures, to weight the contributions of neighbor users and the more a user a
trusts on user b the more ratings of b will be considered to recommend items to a.
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Trust can be explicitly or implicitly acquired. When explicitly acquired, users are asked to
build a Web of Trust (WOT), that is, a list of users they trust. They can even rate every user
in their WOT. This is the solution taken by the movie recommendation system FilmTrust
[9]. Users of FilmTrust are asked to rate friends in a 0-10 scale. For non-rated of not directly
connected users a trust propagation algorithm is used to estimate trust between them and
the target user.

Sometimes we do not want to bother users asking for their WOT, or we do not have this
possibility. In these cases we have to find a way to estimate trust. As in social networks
we have some sort of information on friendship, or interaction between users, we can try to
define trust based on this relationships or interactions. We can define trust, for instance,
as a normalized factor proportional to the number of interactions between two users. Trust
computation changes from one social network to another. In LinkedIn, a measure of trust
can be defined from endorsements and connections. In Twitter, trust can be inferred from
mentions between users, and/or from the number of times that one user retweets another
user.

To compute trust between not connected users a model of trust propagation is needed.
Trust propagation models tend to apply a transitivity hypothesis: if user a trusts on user b
and user b trusts on user c it can be assumed that user a trusts on user c. Another issue is
how exactly this trust passes from a to c is to be defined. We can decide trust of user a on
user c tac as the minimum trust on the path that connects a to b (an edge on the path can
be created by a friendship or an interaction). Or maybe we prefer defining trust tac as the
product of trusts on the path. When multiple paths connect a to b we can use aggregator
operators. For instance, for two paths that connect a to b we can compute the total trust as
the average of trusts for these two paths, the minimum, or the maximum.

Trust can be either general (for any topic) or specific (for a set of topics). In cases where
trust is explicitly asked to users, dealing with topic-based trusts is straightforward, as we can
consider an implicit and separate social network for every topic. However, when trust have to
inferred for every topic separately then new difficulties arise. If a trusts on b on topic t and
b trusts c on topic q it is probably wrong to infer that a trusts c on any topic. In this cases
it is necessary to apply topic detection methods to extract active topics from the interactions
(or from the item). Notice that even when talking about the same topic transitivity might
not hold: user a preferences on music might be similar to user b and b preferences might be
similar to c, but it doesn’t mean a preferences are similar to c as the similarity between their
preferences could have become too small after these two steps.

The research in this area is still in its early phase and results about the systems per-
formance are mixed. For example, [29] report that overall, social-network based recommen-
dations are no more accurate than those derived from traditional Collaborative Filtering
approaches, except in special cases, such as controversial items or for cold-start situations.
Others have showed that adding social network data to traditional Collaborative Filtering
improves recommendation results [19].

2.4.4 Evaluation metrics

The choice of a good evaluation measure is still a matter of discussion. A large variety of
metrics can be applied, and we must make a decision about the most appropriate algorithm
for our scenario. It is unlikely that a single metric would outperform all others over all
possible scenarios. Selecting the proper evaluation metric to use has a crucial influence on
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the selection of the final recommender algorithm.
A classification of possible tasks and a proposal of suitable metrics for every tasks can be

found in [12].
The next sections discus the main evaluation metrics used in recommender systems when

the task is one of classification. We define POS as the set of items that the user will like (and
therefore should be recommended) and NEG as the set of items that the user will not like (and
therefore should not be recommended). We define as True Positives (TP) the set of items
recommended that belong to POS; True Negatives (TN) is the set of items not recommended
that belong to NEG; False Positives (FP) is the set of recommend items that belong to NEG
(and therefore should not have been recommended); False Negatives (FN) is the set of not
recommended items that belong to POS (and therefore should have been recommended).

Accuracy

Accuracy is commonly used to evaluate the performance of the recommendation method.
Accuracy = (TP+TN)/(TP+TN +FP+FN)

Accuracy =
TP + TN

TP + TN + FP + FN
(2.17)

Two popular measures of accuracy for regression tasks are the Mean Absolute Error (MAE):

MAE(f) =
1

Rtest

∑
rui∈Rtest

|f(u, i)− rui| (2.18)

and the Root Mean Squared Error (RMSE):

RMSE(f) =

√
1

Rtest

∑
rui∈Rtest

(f(u, i)− rui)2 (2.19)

Recall and precision

For a given number of returned items, recall is the percentage of relevant items that were
returned and precision is the percentage of returned items that are relevant.

Precision =
TP

TP + FP
(2.20)

Recall =
TP

TP + FN
(2.21)

Note that there is an inherent tradeoff between recall and precision and must therefore be
used together.

F1-measure

F1-measure puts recall and precision into the same measure:

F1 =
2RP

R+ P
(2.22)
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ROC

Receiver Operating Characteristic (ROC) Curve draws True Positive Rate (TP/(TP +FP ))
in function of False Positive Rate (FP/(TP + FP )). Note that ROC curve reflects a ratio
between TP and FP, and thus at the best ROC point we will obtain the best precision for
this model. The advantage of ROC curves is that allows us to understand in which zones
our recommender operates better. Model 1 in Figure 2.12 suggest that this model is fairly
better when extracting a few items while model 2 is more consistent, outperforming model 1
for higher False Positive Rates. Coordinate (0,0) means that no item has been recommended
yet, while in (1,1) all items have been recommended.

Figure 2.12: Example of two ROC curves. The diagonal represents ROC curve corresponding
to a random model. The ideal curve would be one going from (0,0) to (0,1) and to (1,1), that
corresponds to a model that finds all the True Positives before any False Negative.

Confidence intervals

When estimating the accuracy of a classifier by averaging several tests it is expected to get
a normal distribution of our variable ”accuracy”. Its is intuitive to see that the higher the
variance of the sample, the higher the margin of error on estimating the real mean of the
accuracy. Confidence intervals are error margins under which the mean is contained with a
certain probability.

Significance tests

When choosing one from a set of algorithms we must be confidant that the candidate will
also perform better for the yet unseen data that the system will face in the future.There
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is a possibility that the algorithm that performed best on the test set did so because the
experiment was fortuitously suitable for that algorithm. To reduce the possibility of such
statistical mishaps, we must perform significance tests on the results. A standard tool for
significance testing is the p-value. P-value is the probability that the obtained results were due
to luck. Null hypothesis (H0) is usually defined as the two means being equal, and p-value can
then be seen as the probability that H0 is true. We will reject the Null hypothesis if the p-value
of the difference is above a certain threshold. Traditionally, people choose p = 0.05 as their
threshold, which indicates less than 95% confidence. Student’s distribution is a probability
distribution that comes out naturally from measuring the differences on the means of two
populations. In machine learning tasks, we often need to compare two algorithms. From each
algorithm we generate a number of tests that generate a population of results. If the mean of
one population is significantly higher (e.g.: a p-value of 0.05) than that of the other, then we
can confidently say that this algorithm performs better. Student’s t-test looks at the average
difference between the performance scores of algorithms A and B.

For a deeper discussion on what significance tests can be used what scenarios, and specially
in multiple datasets, see [6].

2.5 Microblogging

Microblogs are social networks where users share short messages. These messages are mainly
text, but can link to all kind of content (video, image, or web pages). Users can subscribe to
other users profile to receive their messages on their main feed page. Identi.ca1 and Twitter2

are two of the most popular microblogging sites.
Twitter is a microblogging service where users share their messages with other users

subscribed to their feed (followers). Every shared message is called a tweet, and can optionally
contain links to a more detailed source of information. When users receive a tweets in their
feed they can retweet (forward to their friends) mark it as a favourite (e.g.: to read it later),
or reply to the first user about the tweet, maybe provoking a conversation on the subject of
the tweet.

Twitter users have created a common markup vocabulary: RT stands for retweet, a ‘#’
followed by a word represents an hashtag, and a ‘@’ followed by a username directly addresses
the message to that user, while keeping the message public for other users to read. This type
of messages are often referred to as @replies.

Notice that a user can see other users tweets without being directly connected, via moni-
toring a hashtag or by receiving a retweet from one of her friends.

While initially intended for users to share what are they doing, the creativity of users
and the simplicity of the service has made Twitter to accomodate a wide variety of use-cases,
from political campaign to education, and from marketing to social activism.

A common use-case in Twitter is that of sharing news. Lots of users tend to specialize
their profiles on one subject (e.g: computers, sports, politics) and share links to news that
may become of interest to their followers. As every user only follows to a set of users he is
interested on, there is a lot of potentially interesting information from people they do not
follow that remains unseen to the users. Even reading everything their friends (followed)

1http://indeti.ca
2http://twitter.com
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publish is an stressful task when the number of friends is too high. Twitter users face then a
problem of information overload. That opens a door for recommender systems.

Most of recommender systems on twitter are based on people recommendation. That is,
they suggest to users new people to follow. The problem is that users do not have to be inter-
ested on everything one person says, and subscribing to this user tweets, while adding some
useful information to their timeline, might also increase the noise. Is therefore necessary to
consider single tweets recommendations, guaranteeing that we are delivering new information
with a high signal/noise ratio.
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Chapter 3

State of the Art

The emerging of social networks such as Twitter, Facebook, LinkedIn, or eBay brings some
new problems and opportunities to the recommender systems arena. A common problem that
affects recommender systems is that of sparsity. Most items are only shared by a small number
of users, which makes finding user similarities a very difficult task. In social networks, if we
can access to the interactions between users and its relations (e.g. friendship) we can try to
introduce the concept of trust to enhance traditional recommendation methods. Trust-aware
recommender systems compute trust that users have on other users and include this social
information in their algorithms to improve the accuracy of their predictions.

If the system where we apply recommendations is not originally designed for recommen-
dations, it will not have any feedback mechanism. How to get (or estimate) this feedback is
a problem that must be addressed. Twitter, for instance, does not have any explicit feed-
back on whether a user liked a friend’s tweet of not. It seems clear that the accuracy of the
recommender system will strongly depend on how well we extract this feedback information.
Besides, in trust-aware recommender systems, even when this feedback is available there is
still a need to decide how to estimate trust from this feedback.

This chapter gives an overview of the main tasks of trust-aware recommender systems and
some of the most popular solutions in the literature.

3.1 Trust in social recommender systems

To understand the different strategies proposed in the literature, we propose a general clas-
sification of the different steps that are implicitly of explicitly followed in most of works on
trust-based recommendations. We identified three major steps that are described in the next
sections.

3.1.1 Direct trust computation

Direct trust is defined as the trust between two users that are directly connected in the social
network. The first step to compute trust among users in the network consists on creating
a network where nodes (users) are connected to other nodes by directional edges and where
the strength of the edge corresponds to the amount of direct trust flowing through the two
connected nodes.

We can distinguish between two main strategies to obtain direct trust. The first one is
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explicit annotation of direct trust relationships. Golbeck [8] proposes a WOT (Web-of-Trust),
an extension of FOAF (Friend-of-a-Fiend) where users annotate a set of friends they trust
on in a [0, 10] scale. Appleseed [30] mines Advocato1 network where users certificate peers
according to four levels of trust: namely “Observer”, “Apprentice”, “Journeyer”, and “Mas-
ter”. The authors of Appleseed mapped those levels to real numbers for their computation.
The advantage of these method is that they have a real (not normalized or ranked) scale of
trust. In MoleTrust [18] , a similar method to TidalTrust, authors also consider information
provided by users in their Web Of Trust.

The second one is implicit inferring of direct trust relationships. This is necessary when
we do not have any user’s annotation and we have to analyze users’ behavior to infer direct
trust relations from those users that interacted directly. Eigentrust [14] proposes analyzing
the successful downloads in a peer-to-peer network to estimate how much a peer should be
trusted. PageRank [21] can be seen as a global trust metric that proposes using the number
of links as an indicator of trust.

3.1.2 Trust propagation

For two people who are not directly connected, the information about their mutual trust is not
directly observable. However, the paths connecting them in the network contain information
that can be used to infer how much they may trust one another. Paths are generally composed
of edges that correspond to direct trust relations in the network. A common strategy for
trust propagation is that of the random walk approach. Random walk approaches compute
the probability of walking from one node to another given initial transition probabilities
between some of the nodes in the network. These initial transition probabilities are stored in
a transition matrix that is multiplied by itself n times to compute the probability of walking
from every two nodes after n steps. PageRank [21] uses a random walk approach to compute
a global trust for every website. EigenTrust [14] uses random walk to compute the global
trustfulness of a peer in the network.

More sophisticated methods try to explicitly adapt the properties of trust (e.g. decay,
transitivity) to their algorithms. This is clearly seen in Golbeck’s TidalTrust [8]. TidalTrust
incorporates two concepts that the authors detected in social networks: shorter paths are more
desirable and more trusted neighbors are generally more accurate. MoleTrust [18] proposes
a method similar to TidalTrust. The main novelty in MoleTrust is that, unlike TidalTrust
which uses the shortest path as maximum path length, the horizon (maximum length for any
propagation path) is a fixed parameter.

Another original approach is taken by Ziegler and Lausen [30]. They propose Appleseed,
a trust propagation strategy based on spreading activation models to compute trust of nodes
from a set of reference seed nodes. Given an amount of energy injected to every seed node,
energy is proportionally distributed among the edges of the graph according to the strength
(direct trust) of the edge. If a node does not receive enough energy, they say the node runs
dry. When every node in the graph runs dry the spreading algorithm stops.

3.1.3 Trust-aware recommendations

When applying trust to recommendations, the most common approach is using trust over
a Collaborative Filtering (CF). CF tries to identify users that have relevant interests and

1http://www.advogato.org/trust-metric.html
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preferences by calculating similarities among user profiles. The idea behind this method is
that consulting the behavior of other users with similar rating activity may be beneficial to
one’s search. To make a prediction of the rating that a user u would make of an item i, CF
calculates a weighted deviation of the ratings for the item i made by u’s closest neighbors
and add it to the average ratings of u:

r̂ui = ru +

∑
v∈Ni(u)

wuv(rvi − rv)∑
v∈Ni(u)

|wuv|
(3.1)

where Ni(u) is the set of u’s closes neighbors that rated item i, rvi is the rating of i made by
user v, rv is the average of v’s ratings ,and wuv is the similarity between users u and v. In
standard CF, the set of closer neighbors Ni(u) are those users with a highest similarity to u
that have rated item i. Similarity between two users’ profiles is often calculated as Pearson’s
Correlation Coefficient (PCC).

After trust is computed and propagated, it can be introduced Equation 3.1 by means
of the set Ni(u), wuv or both. O’Donovan and Smith [20] call these approaches trust-based
filtering and trust-based weighting respectively. In their trust-based weighting they combine
their trust metric with Pearson’s correlation, while the set of neighbors is obtained by using
the former as similarity measure. In their trust-based filtering they use their trust metric to
obtain the closest neighbors while they keep a traditional similarity measure.

Lathia et al. [17] propose k-Nearest Recommenders (kNR), instead of the traditional
k-Nearest Neighbors (kNN), to find the nearest neighbors. Unlike kNN, each user’s neigh-
borhood is dynamic, and the selection of neighbors is guided by the item that a prediction is
being made for.

3.2 Related work

In the following sections we will explain what we consider the most interesting approaches
to trust computation and trust-aware recommender systems. Even if some of the explained
methods to compute trust are not explicitly designed to be applied in recommendations -
since their output is a trust estimation between users in the network-, they can be used to
recommendations.

The selection has been made by relevance and proximity to our approach, which will be
explained in the following chapters.

3.2.1 TidalTrust

TidalTrust [8] is an algorithm for propagating trust in networks with continuous rating sys-
tems. Direct trust is explicitly obtained by previously building a WOT (Web-of-Trust), an
extension of FOAF (Friend-of-a-Fiend), where users annotate a set of friends they trust on in
a [0, 10] scale. Golbeck analyzed some of the properties of trust in social networks to design
a trust propagation algorithm that took them into account. This observations are (a) shorter
paths are more desirable than longer ones, and (b) the more trusted a neighbor is, the more
coincidence in the trust ratings of the neighbor and the target user. Besides, in order to avoid
fixing a maximum length of the paths where trust propagates through that would cause some
interesting nodes to be unreachable, Golbeck incorporated a variable path length.
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Let tis represent the trust rating from node i to node s (sink). The inferred trust rating
is given by Equation 3.2.

tis =

∑
j∈adj(i)|tij≥max

tijtjs∑
j∈adj(i)|tij≥max

tij
(3.2)

In order to apply this formula, we need to decide which paths must be followed from the
source to the sink, and which is the value of the max trust threshold. This threshold is
dynamically computed and is used to disregard edges where trust is too low.

The full algorithm is illustrated in Algorithm 1. In the first part, the source node begins
a Breadth First search for the sink. It polls each of its neighbors to obtain their rating of the
sink. Each neighbor repeats this process recursively, keeping track of the current depth from
the source. Besides, each neighbor keeps track of the strength of the path to it, calculated
as the minimum of the source’s rating of the node that leads to the neighbor and the node’s
rating of its neighbor. Nodes adjacent to the source will record the source’s rating assigned to
them. The neighbor records the maximum strength path leading to it. Once a path is found
from the source to the sink, the depth is set at the maximum depth allowable. Since the search
is proceeding in a Breadth First Search fashion, the first path found will be at the minimum
depth. The search will continue to find any other paths at the minimum depth. Once this
search is complete, the trust threshold is established by taking the maximum strength of the
trust paths leading to the sink. An example of this first part of the algorithm is illustrated
in Figure 3.1.

Figure 3.1: Example of trust computation with TidalTrust. The label on each edge represents
the trust rating between nodes. The label on each node indicates the maximum trust strength
on the path leading to that node. The two nodes adjacent to the sink have values of 9, so 9 is
the max value. The bold edges indicate which paths will ultimately be used in the calculation
because they are at or above the max threshold (source: [8]).

In the second part of the algorithm, and once the max value is established, a backwards
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process starts from the sink to the source, through the selected paths where every node is at
or above the max threshold, to apply Equation 3.2.

3.2.2 EigenTrust

The goal of EigenTrust [14] is to compute global reputation of peers in a peer-to-peer network.
Kamvar et al. define a local trust value (direct trust) sij as the difference between satisfactory
and unsatisfactory transactions with peer j:

sij = sat(i, j)− unsat(i, j) (3.3)

To allow local trust values to be further aggregated, they define a normalized local trust value:

cij =
max(sij , 0)∑
j max(sij , 0)

(3.4)

Though normalization allows aggregation, it avoids an absolute interpretation as the values
are now relative. That is, if cij = cik, we know that peer j has the same reputation as peer k
in the eyes of peer i, but we do not know if both are very reputable, or if both are mediocre.

In order to propagate trust from i to j, EigentTrust adopts a Random Surfer approach.
Assume C is a matrix containing all the cij values. To propagate direct trusts up to n steps,
we compute:

~ti = (CT )n~ci (3.5)

where ci is the normalized local trust vector of peer i. Since C defines a Markov Chain, if n is
big enough every ~ti converges to the same ~t. This vector, which is the stationary distribution
of the Markov Chain, contains the global trust of every peer in the network. Therefore, for
any initial distribution ~e global trust can be expressed as:

~t = (CT )n~e (3.6)

where, for simplicity’s sake, ~e can be defined as a uniform probability distribution ei = 1/m.
To incorporate a priori trust in a set of P nodes, they use an initial distribution of pi = 1/|P |
if i ∈ P , and pi = 0 otherwise. This distribution will converge faster than the uniform
probability distribution previously proposed. For inactive peers, in order to avoid undefined
cij they assign cij = 0. EigentTrust also aims to avoid malicious collectives, that is, groups of
malicious peers who know each other, who give each other high local trust values and give all
other peers low local trust values in an attempt to subvert the system and gain high global
trust values. EigenTrust addresses this by forcing every peer in the network to place some
trust in the a priori trusted peers. The final algorithm is shown in Algorithm 2.

Since in a distributed peer-to-peer network there is no centralized server that stores all
the values cij , Kamvar et al. propose a further modification to this algorithm to allow a
distributed computation. Further details of this are out of the scope of this section and can
be seen in [14].

3.2.3 Appleseed

Appleseed [31] is a trust propagation method to compute global trust from a set of local nodes
(seeds) that are considered to be the authorities in a given community or network. The global

28



Algorithm 1: TidalTrust algorithm

foreach n ∈ G do
color(n) = white
q = empty

TidalTrust (source, sink)
push(q, source)
depth = 1
maxdepth = infinity
while d(depth) not empty and depth ≤ maxdepth do

n = pop(d(depth))
push(d(depth), n)
if sink ∈ adj(source) then

cached rating(n, sink) = rating(n, sink)
maxdepth = depth
flow = min(path flow(n), rating(n, sink))
path flow(sink) = max(path flow(sink), f low)
push(children(n), sink)

else
foreach n2 ∈ adj(n) do

if color(n2) = gray then
color(n2) = gray
push(temp q, n2)

if n2 ∈ temp q then
flow = min(pathf low(n), rating(n, n2))
path flow(n2) = max(pathf low(n2), f low)
push(children(n), n2)

if q empty then
q = temp q
depth = depth+ 1
temp q = empty

max = path flow(sink)
depth = depth− 1
while depth > 0 do

while d(depth) not empty do
n = pop(d(depth))
foreach n2 ∈ children(n) do

if rating(n, n2) >= max and cached rating(n2, sink) ≥ 0 then
numerator = numerator + rating(n, n2) ∗ cached rating(n2, sink)
denominator = denominator + rating(n, n2)

if denominator ≥ 0 then
cached rating(n, sink) = numerator/denominator

else
cached rating(n, sink) = −1

depth = depth− 1

return cached rating(source, sink)
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Algorithm 2: EigenTrust algorithm

~t0 = ~p
repeat

~tk+1 = CT~t(k)

~tk+1 = (1− a)~tk+1 + a~p

δ = ||t(k+1) − t(k)||
until δ ≤ ε

trust of a given peer is the trust of this peer in the eyes of the seed nodes. Appleseed is based
on the spreading activation models of psychology. Moreover, authors provide an extension to
deal with distrust statements.

Given a graph G representing a network of users or nodes, continuous weights between
[0,1] are assigned to edges (e.g. direct trust). Seed nodes are activated through an injection
of energy e, which is then propagated to other nodes along edges according to a set of simple
rules: all energy is fully divided among successor nodes with respect to their normalized local
edge weight, i.e., the higher the weight of an edge is, the higher the portion of energy flows
along that edge. Furthermore, the closer a node x is to the injection source s, and the more
paths leading from s to x, the higher the amount of energy that flows into x. In order to
eliminate endless, marginal and negligible flow, energy streaming into node x must exceed
threshold T in order not to run dry.

Appleseed also handles trust decay and the elimination of rank sinks by incorporating
a spreading factor d. Let in(x) denote the energy influx into node x. Parameter d then
denotes the portion of energy d · in(x) that the latter node distributes among successors,
while retaining (1− d) · in(x) for itself.

There is a common problem when trust is not propagated as an absolute value but in
terms of percentage of trust given to a node. For instance, if a node a has issued only one
trust statement about a neighbor p : W (a, p) = 0.25, and another node b assigns full trust
over neighbors q, r, s, it can happen, -within some network structures-, that the final global
trust assigned to p is unfairly higher than that assigned to q, r, s since these nodes had to share
the energy of their parent. In order to avoid this, Appletrust incorporates the assumption
that every node has full trust on the seed, adding a virtual edges to the sink W (x, s) = 1
from every other node. Authors argue that this solution has two more collateral effects: It
indirectly gives more energy to those peers closer to the sink, and avoids dead end nodes.

The full algorithm is shown in Algorithm 3. Further details can be seen in [31]

3.2.4 kNR trust-based collaborative filtering

k-nearest recommender (kNR) Collaborative Filtering (CF) [17] is an adaptation of the more
popular k-nearest recommender (kNN) Collaborative Filtering. The authors proposed this
method to apply trust instead of the traditional k-Nearest Neighbors (kNN) to find the nearest
neighbors. Instead of predicting ratings from “how did users that are similar to me rate this
item?”, kNR-CF predicts them from “how much do those I trust like this item, and how
should I interpret their opinion?”.

Traditional similarity methods used in Collaborative Filtering, such as Pearson Correlation
Coefficient, rely on a non-empty intersection between two users’ profiles in order to find a
measure of similarity using co-rated items. When the number of co-rated items is low or
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Algorithm 3: Appleseed algorithm

Trust s ∈ V, in0 ∈ R0, d ∈ [0, 1], Tc ∈ R+

in0(s) = in0

trust0(s) = 0
i = 0
V0 = {s}
repeat

i = i+ 1
Vi = Vi−1
x ∈ Vi−1 : ini(x) = 0
forall the x ∈ Vi−1 do

trusti(x) = trusti−1(x) + (1− d) · ini−1(x)
forall the (x, u) ∈ E do

if u /∈ Vi then
Vi = Vi ∪ {u}
trusti(u) = 0
ini(u) = 0
addedge(u, s)
W (u, s) = 1

w = W (x, u)/
∑

(x,u′)∈E W (x, u′)

ini(u) = ini(u) + d · ini−1(x) · w

m = maxy∈Vi
{trusti(y)− trusti−1(y)}

until m ≤ Tc
return trust : {(x, trusti(x))|x ∈ Vi})
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zero, the similarity measure is not significant. This is a cause of what is known as cold-start
problem. Instead, kNR follows the next strategy: When the user a enters a rating ra,i for
an item i, the system examines all the raters for item i, and calculates how much should the
target user have trusted each of these recommenders. If we were considering this problem
from the perspective of a user-item rating matrix, this process would iterate over item i’s
column, and for each row (i.e. recommender) b make a utilitarian evaluation of the entry
compared to the user’s rating r:

value(a, b, i) = −1

5
|ra,i − rb, i|+ 1 (3.7)

The equation, which assumes a five-star rating scale, awards the highest trust to users who
rated the item exactly as the user did. If the recommender b has not rated item i, a trust score
of 0 is returned. If a recommender b has rated the item, the trust score will be positive, even
if the recommender’s rating was the complete opposite of the user’s. The computed value is
used to update the trust for recommender b, which is an average of the value contributed over
all the n historical ratings:

trust(a, b, n) =

∑n
i=0 value(a, b, i)

n
(3.8)

The idea is to reward recommenders who can provide information, varying the reward ac-
cording to the perceived quality of the information, and to downgrade recommenders that do
not have any information available. Note that, unlike similarity methods, weightings between
user pairs are no longer guaranteed to be symmetrical. When predicting the rating of a user
a for an item i, we select the top-k neighbors N(a, i) of user a who have rated the item i.
Thus, unlike kNN, each user’s neighborhood is dynamic, and the selection of neighbors is
guided by the item that a prediction is being made for. The prediction can then be made by
the traditional Collaborative Filtering formula. However, authors propose a modification of
the formula that uses a semantic distance. Further details can be seen in [17]

3.2.5 Profile Level and Item Level trust for Collaborative Filtering

O’Donovan and Smyth [20] developed a similar solution to that of Lathia et al. They proposed
two computational models of trust based on the past rating behavior of individual profiles.
These models operate at a profile-level (average trust for the profile overall) and at a profile-
item-level (average trust for a particular profile when it comes to making recommendations for
a specific item). They name producer to the user contributing in the prediction and consumer
to the target user. Trust assignments are here based on the correctness of recommendations
of users to the target user. In order to calculate the correctness of p’s recommendations,
they separately perform the recommendation process by using p as c’s sole recommendation
partner. A rating prediction for an item i made by a producer p(i) for a consumer c(i) is
considered to be correct if the error is below a given threshold:

Correct(i, p, c)⇔ |p(i)− c(i)| < ε (3.9)

and the consumer’s trust on the producer p when considering an item i is computed as:

Tp(i, c) = Correct(i, p, c) (3.10)
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The full set of recommendations that a given producer has been involved in RecSet(p) is
given by:

RecSet(p) = {(c1, i1), ..., (cn, in)} (3.11)

and the subset of these that are correct, CorrectSet(p) is given by:

CorrectSet(p) = {(ck, ik) ∈ RecSet(p) : Correct(ik, p, ck)} (3.12)

where the i values represent items and the c values are predicted ratings.
From this, authors define two basic trust metrics based on the relative number of correct

recommendations that a given producer has made. The profile-level trust, TrustP for a
producer is the percentage of correct recommendations that this producer has contributed
with:

TrustP (p) =
|CorrectSet(p)|
|RecSet(p)|

(3.13)

For a more fine-grained metric, they define item-level trust, TrustI , which measures the
percentage of correct recommendations for an item i:

TrustI(p, i) =
|{(ck, ik) ∈ CorrectSet(p) : ik = i}|
|{|(ck, ik) ∈ RecSet(p) : ik = i}

(3.14)

Once trust is computed, authors propose two ways of incorporating trust into the tra-
ditional Collaborative Filtering formula: trust- based weighting and trust-based filtering. In
trust-based weighting, trust is combined with the users’ similarity measure to use it as the
weighs in the formula:

c(i) = c+

∑
p∈P (i)

(p(i)− p)w(c, p, i))∑
p∈P (i)

|w(c, p, i)|
(3.15)

where weights are calculated as the harmonic mean of trust and similarity:

w(c, p, i) =
2(sim(c, p))(trustI(p, i))

sim(c, p) + trustI(p, i)
(3.16)

In trust-based filtering, trusts is used to decide which neighbors should participate in the
prediction.

c(i) = c+

∑
p∈PT (i)

(p(i)− p)sim(c, p))∑
p∈PT (i)

|sim(c, p)|
(3.17)

where set of trusted procucers P T
i is:

P T
i = {p ∈ P (i) : TrustI(p, i) > T} (3.18)

Authors also propose a combination of both methods. For a further explanation and
justification of these methods see [17].

33



3.3 Summary

In this chapter we have seen some proposals for computing trust and for using trust in
recommender systems. Unlike most of the explained methods, we cannot use annotated trust
information. As we will see in the next chapter, we will have to infer direct trust from users
interactions, and what we will get will not be an absolute trust value (e.g.: real values between
[0,10]) but the proportion of trust that a user gives to each neighbors. This makes us disregard
the use of TidalTrust. In the other hand, we will see that our items (tweets) are extremely
volatile -we could say that they“disappear” after a short period of time. This is why methods
based on Collaborative Filtering are not applicable either. This leaves us with Appleseed and
EigenTrust to compute trust, and with content-based recommendations to build the ground
of our recommendation engine. The conceptual simplicity of EigenTrust has made us to opt
for designing a similar method to compute trust.
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Chapter 4

A Recommender System for
Twitter

4.1 Overview

The aim of this project is to build a prototype of a trust-aware recommender system for
Twitter using some of the state of the art techniques and see how they perform in a such
scenario. But first, we face the same problem than a search engine when analyzing the
Internet: as we do not have access to the whole network, we need to build a Twitter crawler
that fetches the activity of users and makes it available for our recommender.

Regarding the computation of trust in Twitter, we propose a method similar to that of
EigenTrust. We adapted the EigenTrust computation of direct trust from a P2P network to
the Twitter social network. As EigenTrust, we will infer direct trust analyzing the interactions
between users. There are several types of interactions in Twitter and thus this translation
from interactions into trust will have to be carefully analyzed. We also face a problem of how
to evaluate our trust model. Evaluating trust in a social environment is a hard task with no
objective measure. In order to summarize, we address here two main questions:

(a) how can we adapt existing trust metrics to Twitter?

(b) does trust information help in recommending tweets?

For the first question we will adapt EigenTrust to our scenario and evaluate it in a similar
way to that of TidalTrust, as it is also a recommender system scenario. Our recommender
prototype will help us to tackle the second problem. Once we have a set of candidate tweets for
a given user, we will test whether adding trust information improves classical recommendation
methods.

This chapter is distributed as follows: Section 4.2 explains how trust and trust propagation
are adapted to Twitter. Section 4.3 briefly discusses some of the issues on temporal dynamics
that should be addressed. Section 4.4 explains the crawler we designed to get users’ profiles
and their tweets as well as the heuristics we used to orientate the crawler. Section 4.5 proposes
adapting query expansion to enrich the information in the tweet by adding related words,
potentially improving the results of similarity metrics between tweets. Section 4.6 explains
how all these modules and techniques are put together, giving a global explanation of the whole
architecture of the recommender and its workflow from crawling to final recommendations.
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4.2 Trust in Twitter

If Twitter had an explicit feedback mechanism, that is, the possibility for users to rate other
users (or their tweets), we could create a trust metric that considers the positive feedback
towards other users. The more positive feedback a user u has given over a user v, the higher
confidence on the assertion that user a trusts user b. If Twitter had a FOAF-like tagging
like the WOT (Web Of Trust) proposed by Golbeck [8] where users explicitly annotate trusts
on other users, we could use (not considering computationally costs for this scenario) their
TidalTrust algorithm to propagate trust.

But we do not have such a feedback or annotation mechanism on Twitter. Instead, we
have to analyze the interactions between users to indirectly estimate how much a user trusts
another one. Using the Twitter public API we can get information on this interactions. We
propose using these interactions and translating them into a measure of direct measure of
estimated trust.

Twitter users interact in three ways: (a) following other user tweets (b) retweeting other
user’s tweet (c) mentioning another user or (d) favoriting another users’ tweet. The question
here is how these interactions can be cast to a measure of direct trust.

• The action of a following b means that a wants to receive all the tweets published by
b. A user can start following someone for many reasons. The user might have been
recommended by Twitter or by a friend. A common case is that b has been retweeted or
mentioned many times by a person that a is already following, and a eventually decided
to follow b because a thought that b publications are interesting. Following is not a clear
indicator of trust. Users follow users (apart from cases of personal friendship) because
they think they will be interested on what they post. However, if after a period of
time this profile was not as interesting as expected, users can stop following (unfollow)
others. Therefore, we can not infer much information from a following b.

• The action of a retweeting a tweet t from user b means that a found the content of t
(or the link it refers to) interesting, and a expects her friends to like the content of t
as well. If a tends to retweet b a lot, it can be inferred that a trusts b at some level.
It is reasonable to think that the more a retweets b, the more confident we can be that
a trusts b. Our trust model is gradual, that is, we do not compute the probability of
a trust relation, but its strength. Therefore we can say that the more a retweets b the
stronger is her trust on b.

• The action of a mentioning b on a tweet t means that a wants b to read the tweet. It
can be a single tweet or a whole set of crossed mentions between a and b (e.g.: a discus-
sion). Since mentions can be used in so many ways (e.g.: expression of disagreement or
notification) we can not be sure, without further analysis, whether a mention expresses
trust, distrust, or none of them. However, we think mentions usually express some kind
of trust relationships (people tend to relate to those people who think like them) so we
will consider a mention as a positive indicator of trust.

• The action of a favoriting a tweet t from b may have two meanings. One possibility
is that a uses favorites as a “read it later”, usually a tweet with some link to external
content. Another possibility is that a wants to keep this tweet because she liked it (e.g.:
it was funny, or has some content that a wants to access easily in the future). Therefore,
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we can say that favorites mostly express a trust relation. However, as Twitter does not
provide in the API the time when a user favorites some tweet we do not to consider
favorites.

Mentions and retweets express trust, but they might not express trust with the same
strength. We are sure about retweets, but mentions contain more ambiguity. As we will see
later, we propose weighting these interactions to fine tune the trust model.

Some Twitter users have specialized profiles on some topic (e.g.: politics or machine learn-
ing) and some others have general profiles and post about many topics. An ideal computation
of trust would detect the topics of every tweet involved in a mention or a retweet, and would
increase trust only on those topics. Though the problem they tackle is different, such a topic-
based influence is considered for instance in [28]. For simplicity sake, we compute trust in a
general way, considering that if a trusts b on a topic T , a trusts b on any topic.

We consider users trust their friends proportionally to the number of interactions. Given
a user u, she shares her total trust between every user she has interacted with (mentioned
or retweeted). For instance, if user a had 10 interactions shared amongst user b (3 retweets),
user c (5 retweets) and user d (2 retweets), her trust tab is 0.3, trust tac is 0.5, and trust tad is
0.2. Note a user a can interact with a user b even if a does not follow b. For instance, if user
b published a tweet t and another user which is followed by a retweets t, t will be published
on a’s timeline. As mentioned before, we will consider weighting interactions according to
whether it is a mention, or retweet. It can be formally expressed by the next formula:

tij =
wN

(m)
ij + (1− w)N

(rt)
ij

Ni
(4.1)

where Nij is number of interactions from i to j, Ni is the number of total interactions orig-
inated by a, and w is the weight assigned to retweets in front of mentions. Our intuition is
that w should have a value between 0.5 and 1. Superindexes denote mention interactions (m)
or retweet interactions (rt).

Note that by assigning a limited amount of trust to share among friends, we are losing
the real magnitude of trust. Instead, what we get is an ordered list of users by their assigned
trust.

Trust propagation

So far we have discussed how to infer trust strength between two users (a and b) when a has
directly interacted with b. However, most users have never interacted between each other.
Let c be a user followed by b and not by a. Let tuv be the trust of user u on user v. The goal
of a trust propagation model is to compute tac from trust tab and tbc.

Note that Equation 4.1 can be seen as transition probabilities of a Markov chain if tij
is seen as the probability of an interaction from i to j. If the network is interpreted as a
Markov chain, we can apply a random walk model considering trusts as probabilities and,
in general, considering trust tab as the probability for a to reach b. In Markov models, the
t-step distribution is the distribution after taking t steps from the starting distribution. It is
denoted by Πt = Π0P t where Π0 denotes the initial probability distribution over states and
P t is the transition matrix P raised to the t-th power. As we are considering trust from every
user, the initial probability is set to 1 for every user and P is then a vector of ones. Thus we
have Πt = P t. In order to avoid confusion between steps and trust, we denote steps as s. If
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considering trust as transition probabilities, the probability of walking from node i to node j
after s steps can be expressed as:

t
(s)
ij =

tij if s = 1∑
k

tikt
(s−1)
k,j if s ≥ 1

(4.2)

where the probability of i reaching j after s steps is seen as the probability of taking a single
step to some vertex k and then taking s−1 steps to j. Note that the model takes into account
every path from i to j and with a maximum of s steps.

However, instead of having a fixed number of steps s, we want to consider that users have
an horizon of trust of one step, two steps and so on up to s steps. Moreover, we want to
apply a decay probability to tune the importance of closer neighbors. In a matrix form, we
can express this as:

T s =
1

s

s∑
n=1

αnP
n (4.3)

where P is the initial transition matrix with components tij and α is a decay factor which value
will be discussed in Section 5.1. Our intuition is that s = 3 is a good choice. Inferring trust
further than this would lead to a lower accuracy on trust. To avoid dead end nodes, for those
users with no outcoming interactions we artificially assign an equal amount of interactions to
every other user in the network.

To reduce computing cost we truncate the transition matrix Q by deleting every trust
value below a threshold. We will explain this truncation later. If P has n × n dimensions,
with a naive computation it takes time of O(sn3).

4.3 Temporal dynamics

Users change their preferences over time. This can be caused by a personal shift of interests or
because new topics appear and old topics become obsolete. In the former case, most changes
occur slowly and gradually, as are more attached to the user’s personal interests. In the latter,
changes occur very fast (e.g.: breaking news that the user is interested on).

Another interesting aspect is temporal dynamics on the trust relationships. Over time,
Twitter users start following some new users and unfollow some of their old friends. Twitter
users can do so to optimize their twitter feed with information or people they are really
interested on.

Ideally, these dynamics should be considered by a recommender system. But it is not the
main goal of this system to deal with this kind of dynamics. However, and as the trust model
drives the crawling, which is a critical part of the system, we apply a simple decay model to
capture some of the trust dynamics. Our model ages the old interactions so that the newer
prevail when profiling the user. We apply a forgetting factor to old interactions of a user every
time she creates a new one. New retweets imply a decay on old retweets and new mentions
imply a decay on old mentions. Let ~vu be the vector of interactions from user u. Let ~ua a new
vector with one element set to one and the rest set to zero. The n-th element corresponds to
the user that received the interaction from u. The decay can then be expressed as:

~vu = λ~u+ (1− λ) ~vu (4.4)
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where ~b is a vector with all zeros but a one in the position of user b. The more dynamic the
trust is, the higher value λ should have to age old interactions. Our intuition is that trust
does not change dramatically and a λ = 0.1 could be adequate.

Note that this decay is applied to the transitions matrix, not directly into the trust matrix.
The former will be computed from the first.

4.4 Crawling the network

Since it is not possible to get the whole data in the Twitter network we need to crawl it
using the APIs provided by Twitter. These API’s allow a limited amount of requests per
hour, and so it is important to have a good heuristic to guide our crawling. We use the
trust information to fetch those users whom the seed users trust more at every moment. The
goal of trust-oriented crawling is to fetch interesting tweets for our seed users. In the best
case every tweet a seed user retweets will have been fetched in previous crawls. That is an
impossible task as we cannot perfectly anticipate users behavior due to its continue changes.
Moreover, user interests (and trusted people) can suddenly change from one day to another.
Detecting these peaks is out of the scope of this thesis.

A bad trust computation would lead us to a useless crawling, as we will be collecting tweets
that no one of our seed users like. In this case the recommender would not work as the good
candidates would have not been collected. The crawling criteria is to fetch tweets from the
top influencers of every seed user.

This trust-oriented crawling is bound to our trust-propagation model. Therefore two differ-
ent models would lead to two different data and recommended items. This thesis tries to see
whether a simple propagation method can be useful to enhance recommendations. Finding a
better model for this scenario is out of the scope of this thesis. The details of the crawler we
developed are given in Section 4.6.1.

4.5 Query expansion

Query expansion is an information retrieval techniques that expands queries with related
words such as synonyms or word variants. The aim of query expansion is to add more
information to the query so that the search engine finds more accurate results. We apply a
query expansion technique to enrich the information on the tweet. Tweets are mini-documents
limited to 140 characters lenght. As short texts do not provide sufficient word occurrences,
traditional classification methods based on “bag-of-words” representation have limitations.
To address this problem, we propose to use search engines to incorporate the text in the
results into the bag of words of the original tweet. This solution is based on that proposed in
[24]. Query expansion by internet search engines allows us to deal with different languages.
That is a desirable property in our scenario, as our users and their top trusted users write
mostly in Catalan, Spanish and English.

We use Bing as search engine. The reasons for choosing Bing are the facility of use of
their API1, the availability of a python library, and the possibility to send queries with no

1http://www.bing.com/toolbox/bingdeveloper/
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limitations. We considered Google, Yahoo, and Twitter Search as well. Google was discarded
for its maximum query rate limitation. Yahoo offers an search API with no limitation but as
a payment service. Twitter was discarded because after running some tests we saw that its
search engine attempts a full match. Results in Twitter search -even if we used only some
meaningful words and not the whole tweet- were only retweets of the original one. Therefore
we also discarded the possibility of using a POS tagger to identify nouns in a tweet and create
a less restricting query from them.

Following [24] we use up to 200 results to expand our tweets. However, in most cases Bing
does not give this amount of results.

4.6 Architecture: putting it all together

To test the MarkovTrust on Twitter we designed a system that crawls users and fetches their
interactions. After a period of crawling, we will be able to see how MarkovTrusts performs
and whether it can serve as a basis for recommending tweets.

The system is divided in two modules: a crawler and a recommender. The crawler updates
a list of most influential neighbors for every target user and fetch their tweets. It stores these
tweets for the recommender to use them as its item database. The recommender learns a
model for every user from the user tweets, retweets, and mentions and later makes personalized
recommendations of tweets for every target user. The next sections describe these two modules
in more detail.

4.6.1 Crawler

The crawling module works in a cycle of three phases: crawling, network truncation and trust
updating. The details of this cycle can be seen in Algorithm 5:

Algorithm 4: Crawling cycle

while True do
S ←− SeedUsers() ∪ TopTrustedUsers()
foreach s ∈ S do

statuses←− GetLastUpdates(s)
UpdateInteracctionsMatrix(s, statuses)

end
TruncateInteractionsMatrix() /*remove unsignificant users*/
UpdateTrustMatrix()
UpdateTopTrustedUsers()

end

At the first cycle, the crawler has only a collection of target users that have registered in
the system. These users are those who will receive recommendations from the system. They
serve as seed nodes for the crawler to start looking for trusted users in the neighborhood. In
the next step, the algorithm iterates through every user to get their last published tweets.
Every tweet is then parsed looking for interactions (mentions and retweets) and the interaction
matrix is then updated. When there are no more users left, the interaction matrix is truncated
by leaving only the n-top interacted users of every target user. Using the resulting matrix as
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Figure 4.1: Architecture of the system considering two seed users A and B

the transition matrix, trust between every pair of remaining users is recomputed. From the
final trust matrix, we get a new list of m-top trusted users that will be crawled in the next
cycle. The system then sleeps for some hours in order not to overload the Twitter API.

Crawling

The aim of the crawler is to get a collection of tweets that maximizes the probability of being
liked by the seed users. If trust is well computed and is significant to what users like, a
good crawling would improve the possibility of making good recommendations as the items
to choose from will be an interesting subset for the user. In other words, crawling should
maximize the signal to noise ratio.

The selection of which paths to crawl can follow two general strategies. The first one
is a similarity-based strategy. We can rank the neighbors of the seed users by how similar
they are to the target seed user, and select the n-top similar. A variation of this strategy
would be a more elaborated collaborative filtering strategy that recommends users that the
seed user might like. However, both techniques require fetching the candidates’ profiles a
priori to create profiles and compute similarity between users. This option is discarded for
the intensive (and not allowed) use of Twitter API required. A second major strategy is that
of a trust-based crawling and is the one chosen for our system as it only needs to analyze the
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output interactions from target users, which can be done by a single query that retrieves the
last tweets of a user. New users are selected by ranking the neighbors of every seed user by
how much the seed user trust them. To compute this trust we only need to parse the profile
of the seed user and count the retweets and mentions to every other user. From this we can
compute a trust matrix as explained in Section 4.2.

To summarize, the crawling strategy follows the next rule: For every seed user crawl her
profile and the profiles of her “top trusted” users, and for every user in the “top trusted”
set crawl the profiles of her “top trusted”. Therefore, the system crawls the top trusted
neighbors up to a distance of two steps. We consider this distance to be good enough to build
an interesting set of tweets to recommend. Crawling will further increase the noise, making
our recommendations achieve a possibly better recall but far less precision.

Crawled profiles are stored in separate files (one file per user) to be processed later. The
information stored for every tweet is: Type, user, tweet ID, timestamp, tweet, referred user
and trust. Type can be “normal” (a simple tweet with no interaction with other users),
“mention”, or “retweet”. Referred user is an optional field that remains empty for normal
tweets and for mentions and retweets, contains the user which our target user interacted with.
If more than one user is contained in a tweet only the first one is considered. Trust is the
computed trust of the author of the tweet on the referred user, if any. When the trust system
has not computed any trust for this reference user this value is set to -1.

Pruning

As the number of iterations grows and new users are discovered the interactions matrix also
grows. Computing trust relations has a cost O(n3), which is polynomial in the number of
users n but costly in practice if we let n grow arbitrarily. An option is to limit n so that the
size of the matrix stabilizes at some feasible size. As seen in Equation 4.3, the dimensions
considered are given by the dimensions of the transition probabilities matrix P . In order
to truncate P , we delete those users in the matrix with a low level of interactions. More
specifically, for every user u in the network we keep the edges to the top-m trusted users and
delete the rest of the edges. Once we have delete the less trusted edges, those users with no
incoming edges are deleted from the matrix. We chose m = 100 to limit the time and memory
requirements without introducing much bias in the real trust distribution.

Updating trust

After the transition matrix is updated and the less trusted users have been deleted from the
matrix, the trust matrix T s is recomputed. This matrix contains the trust index between
every pair of seen users, considering that trust can be propagated up to two steps.

At every cycle the crawler reads the set of top-N trusted users for every seed user and
fetches their lasts statuses. Note that, as Algorithm 5 shows, the system updates the transi-
tions matrix for every node up to a distance of s. The new trust matrix is then computed from
this transition matrix. From this trust matrix, the crawler will start a new cycle fetching the
last tweets from the target users users (that are always the same), their top trusted nodes,
the top trusted of the top trusted nodes, and so on up to a distance of s. This way, the
crawler gets a collection of tweets from the top trusted users in the neighborhood of every
target user.
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Algorithm 5: Crawling cycle

while True do
S ←− SeedUsers() ∪ TopTrustedUsers()
foreach s ∈ S do

statuses←− GetLastUpdates(s)
UpdateInteracctionsMatrix(s, statuses)

end
TruncateInteractionsMatrix()
UpdateTrustMatrix()
UpdateTopTrustedUsers()

end

4.6.2 Recommender

The aim of the recommendations module is to periodically (e.g.: every day) get a rank of
top-N items for every final user. For this, it analyzes final users publications to create a
user profile. Then, for every final user, it gets a list of tweet candidates to be recommended.
This list is extracted from tweets published by its neighbors (top trusted nodes and their top
trusted). From this list, a scoring function predicts a score for this item from the user. The
highest top-N items are then showed to the user. We explain this process with more detail
in the next sections.

Instance retrieval

First, a file is created for every target user with a set of positive and negative instances.
As Twitter has no explicit mechanism of rating tweets, we consider a binary rating where
retweets are tagged as positive. The question now is how to get or identify negative tweets,
that is, tweets the user is not interested in. We follow a similar reasoning to that of [13]
where, in a web search scenario: they consider that if user u clicked through result 7 but not
through result 6, he must have seen 6 but not felt interested in it. Here, we consider that
given a user u and a user v and given two contiguous publications v(i− 1), v(i) from user v,
if user u retweets v(i) but not v(i − 1) then it means that user liked v(i) and not v(i − 1).
We are making two assumptions here: first, that user u read v(i − 1). This might be not
true if v(i) and v(i − 1) are very separated on time. In this case, when u checks his feed he
might see v(i) but not v(i− 1). However, for simplicity’s sake we assume that users can read
most of their feed. The second assumption is that the first assumption holds even when u is
not subscribed (follower) of user v, that is, a tweet from v has been propagated through the
network until reaching the feed of user u. Actually, that is why our interaction model does
not consider direct friends but any user, as possible interactions are not limited to friends
(followees).

To get positive and negative instances we read user u tweets and look for retweets. For
every retweet, we check the author of the original tweet. If the author was between the top-N
trusted nodes at the moment of the retweet, the crawled should have captured the original
tweet beforehand and maybe the previous ones. Then, we add the original tweet as positive
example and the previous one as a negative example. We use the original tweet because
sometimes users modify the original one to add their opinion, write it in a personal way, or
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shorten some words to fit the tweet in the 140 characters allowed. If the original tweet of a
retweet is not found in the logs, the example is discarded. Note that we could use Twitter
API to get this tweets but this would increase the number of calls to the API.

Tweet Expander

Text similarity is a important pillar when recommending text items. Traditional methods
to compute text similarity are based on bag-of-word representation of texts, to compute
afterwards a similarity function such as cosine between the two vectors of words. When
dealing with short texts the probability of a word coincidences falls and these methods give
inaccurate results.

The aim of query expansion is to add more words to the tweet so that the word occurrences
between tweets increase. We follow the work on [24] and apply a similar method to expand
tweets. The idea of the method is to query a search engine with our tweet and append the
words contained in the results to the tweet. First, we clean the tweet from any artifact that
could tighten the search (url, hashtags, “RT”, and usernames). Second, we query the Bing
search API. Every result contains some fields such as URL and description. Description is
the snippet of text that is shown for every result. We get the snippets of text of the first 200
results and add them to the original text of the tweet. Note that the search engine might not
find 200 results for our tweet query. In fact, given the extension and complexity of most of
tweets in comparison to a traditional user query, Bing finds no results or just about five or
ten in the best cases. The main risk of tweet expansion is getting much more noise (unrelated
results) than signal (related results).

Preprocessing

Tweets from the crawler are raw tweets from users. Users tend to use abbreviations (”u 2 are
right”) , hashtags (#recsys2012), url links, code words (RT, via, @user, +1), and grammatical
mistakes. Then, data must be cleaned beforehand. The aim of preprocessing is normalizing
the text (tokenization, filtering stop words and stemming) and cleaning it from non-text
artifacts (numbers, url). As url can be informative they will be added later as a boolean
feature that says whether a tweet contains a url or not.

Dictionary extraction

The aim of dictionary extraction is to create a dictionary of words that will act as word
features. A common technique is to use most frequent words in the set of documents. This
avoids having an excessively large set of word features and would not only slow down but
make our classifier more inaccurate (the curse of dimensionality). However, as our dataset
for every user is relatively small we add every word to the dictionary.

We create two dictionaries. The first one is a simple bag-of-words and the second is a
Term Frequency weighted bag-of-words. In the second case, for every word in the dictionary
we compute the log ratio between its occurrences in the positive examples and the occurrences
in the negative examples. The formula is:

tf(w) = log
POSw
NEGw

(4.5)

44



the tf value is 0 when the word is equally used in positive and negative examples. It will be
positive when predominant in positive examples and negative when predominant in negative
examples.

Instance to features

In this step we convert the instances into sets of features so that a traditional classification
algorithm can work with them. We extract the following features: trust, url, words which we
describe below.

• trust is a real value [0,1] that indicates the trust from the target user to the user who
made the original tweet (at the moment of the retweet).

• url is a binary variable that indicates whether the tweet contains any url or not.

• words is a set of features that expresses the content of the tweet. This information
can be codified in different ways. The basic form is a boolean bag of words (one if the
word is in the tweet and 0 if it is not) with words taken from the previously extracted
dictionary. We can express the bag of words with the tf value of every word, as explained
in Section 4.6.2. We can also collapse these bag of words by computing the distance
from the tweet to the positive corpus.

Training and scoring

Finally the system is trained over all the past tweets and is ready to score a new tweet
candidate. These candidates are taken from the top trusted neighbors. If we want the system
to recommend the top-N tweets every day, candidates tweets will be those tweets in the
neighborhood that have been published today (or after the last recommendation to the user
was made).

Note that ten retweets talking about some new topic must be more important than one
hundred tweets talking about another topic two months ago. To give some adaptivity to the
system in terms of concept drift, a decay factor should be applied to past tweets. For now,
we are not considering any decay factor for tweets.

4.7 Technicalities

There are somme dilemmas faced during the design of the system.
As researchers, analyzing a network such as Twitter brings some limitations. First, we

do not have access to the whole network. Twitter freely provides a public API with strong
limitations for developers in order not to overload their network. Using this API limits the
extension and frequency of the crawling that our system can make to fetch either tweets or
interactions between users. Our crawler has to fetch Twitter data without reaching the API
limits. As a consequence, there is a limitation of the users of our system (target or seed users)
and a limitation on how many neighbors of these users we crawl.

Recommender systems can be tested online or offline. Online approaches test the algo-
rithms on real time, giving us a real feedback on how our system behaves out of the lab.
However, online tests are not trivial to design and they are costly as any modification in the
algorithms will have to be tested again. Offline tests can use past behavior of users to use
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it as test set. This allows us to run the algorithms over an over again, but the results will
not be as accurate. Within this approach we assume that past behavior is a good model of
present behavior, which is not true specially when dealing with rapidly changing contexts
such as Twitter. What was interesting one week ago might have lost its information value
today. Because of time limitation, we followed this offline approach on our tests.

These factors prevent us from getting to strong conclusions over the results of our work.
We will therefore limit ourselves to discuss the obtained results to get an intuition of the
quality of our model and its possible enhancements.
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Chapter 5

Experiments

5.1 Experiments

To test the system we selected 20 target users from Twitter. We chose users that we personally
know, so that we can ask for their participation in an eventual future user study. Their
interests range from politics to professional coaching. Their main language is Catalan and
Spanish, while a couple of them sometimes publish tweets in English. We crawled these users
and their neighborhood for six months. After processing users’ logs we got an average of 314
instances per user. These instances -positive and negative cases of retweets- are balanced
(around 50%-50% of retweets and non-retweets).

5.1.1 Validation of the trust model

We have no direct way of testing the accuracy of our trust propagation model. The ideal
scenario would be having a full annotated network where every user has rated every other
user. As we do not have such a network, we follow a similar approach to that of Golbeck [8] to
see how our trust model does on direct neighbors. Later, we will test how trust information
affects the accuracy of recommendations on this network. Golbeck did the following process
for every user: For each neighbor ni of the user (source), a list of common neighbors of the user
and ni was compiled. For each of those neighbors, the difference between the source rating
and ni rating of the neighbor (i.e. computed trust) was recorded as a measure of accuracy.
We call this difference ∆. A smaller ∆ means higher accuracy. But, unlike Golbeck, we are
not interested in the absolute value of trust but on the resulting ranking of users ordered by
their given trust. We would like to know whether a common neighbor is similarly (say, highly)
trusted by both users, without caring for what “high” means for each user. For instance, let
a be a user whose most trusted friend is b, Let b be a user whose most trusted friend is c,
and let c be also a friend of a. We would like our trust model to place c between the most
trusted users of a. A solution can be to compare rankings of a and b. However, this can only
be done when a and b rank the same users. To solve this we normalized the rankings of our
users following the next normalization formula for every item in the original ranking:

normalized rank(r) =
r − 1

R− 1
(5.1)

where r is the ordinal value of the item and R is the length of the rank. The normalized
ranking has all its values into [0,1].
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To analyze the impact of trust decay we compare behaviors of delta when no decay is
used and when an exponential and a linear decay is applied. The formula for the exponential
decay used is:

αn = c
1

1.5n
(5.2)

where c is a normalizing factor to make the sum of α’s to be 1. And the formula for the linear
decay is:

αn = c(nmax − n+ 1) (5.3)

Table 5.1: Relation of trust rank and delta

Ranking
(0-10)

∆
No decay

∆
Linear
decay

∆
Exp.decay

(0-1) 1.14 0.90 0.87
(1-2) 1.10 1.22 1.09
(2-3) 0.96 1.05 1.05
(3-4) 1.07 1.18 1.20
(4-5) 1.09 0.81 1.01
(5-6) 1.13 1.11 0.92
(6-7) 0.91 1.08 1.16
(7-8) 0.90 1.08 0.99
(8-9) 1.3 1.34 1.34
(9-10) 1.26 1.11 1.16

Table 5.1 shows the average values of ∆ at every position of the ranking of trust. The trust
rank and ∆ have been normalized to a [0-10] range. We would expect a smaller ∆ in the top
users, i.e., more agreement among common neighbors. However, we see no clear correlation
between neighbors ratings and ∆. This might be caused either by our model being wrong or
by transitivity not holding in this scenario.

If a user a trusts a user b, this can have a double meaning: First, it can reflect a general
interest on what b publishes. As direct trust is computed by analyzing the interactions
between users this is, by definition, a characteristic of our model; A second characteristic is
that of transitivity when endorsing other users. If a trusts b and b trusts c, a would trust c
if a) transitivity holds and b) the propagation model is appropriate. The general validity of
our trust model will be further discussed in the next section. As for transitivity, the lack of
correlation shown in the table seems to indicate that there is no apparent trust transitivity
occurring in Twitter.

It would be interesting to know whether we do not see apparent transitivity on trust
because trust is not transitive on Twitter, or because our trust model does not capture it
appropriately. If the original interactions are transitive (a highly interacting with b and b
highly interacting with c implies a highly interacting with c) we would infer that our trust
model does not keep transitivity. One could even say that a model based on transitivity, such
as MarkovTrust and most of trust models, might not be appropriate in such scenario.

Table 5.2 is similar to table 5.1 but uses the stored interactions instead of the computed
trust. The table shows that there is a slight correlation but that it is opposite to the correlation
we expected. It seems that, in terms of interactions, users agree less about those with whom
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they interact more. This might be an effect of our selective crawling or due to a lack of more
data to make the patterns statistically sound. Anyway, no transitivity is apparent in the
interactions.

Table 5.2: Relation of interactions rank and delta

Ranking [0-10] ∆

[0− 1) 1.36
[1− 2) 0.75
[2− 3) 1.14
[3− 4) 0.83
[4− 5) 0.78
[5− 6) 0.52
[6− 7) 1.06
[7− 8) 0.53
[8− 9) 0.57
[9− 10) 0.17

Even if there is no evidence of transitivity, we observe a low ∆ at every position of the
rank. That is, either considering interactions or inferred trust, common neighbors are similarly
trusted (or interacted).

5.1.2 Influence of trust on recommendations

We would like to test whether our trust model is good enough to enhance the performance
of a recommender system in Twitter. In order to test this, consider the recommender system
explained in Section 4.6. Given a set of retweets a user has made (positive instances) and
another set not retweeted by the user (negative instances), our recommender system tries to
learn a model to predict whether a non-seen tweet will be retweeted by the user. As we are
applying offline experimentations and we do not have access to future tweets, we split this
collection of tweets on training set (75%) and test set (25%). As these test tweets are past
tweets, we know whether the user retweeted them or not. In other words, the instances are
all tagged. We compared models in a search space as shown in 5.3. We tested both SVM
(RBF kernel with C = 1.0 and γ set to the inverse of the number of features) and Naive
Bayes classifiers combined with the multiple techniques explained in Section 4.6: Trust, tweet
expansion and encoding of word features. Metrics used are accuracy, recall, precision, F1,
and AUC.

For intuition, Table 5.3 shows the averages of the models with trust and the ones without
trust for different metrics. Though the small size of the dataset does not allow to draw
rigorously sound conclusions, we observe that models using trust information seem to perform
better, and in particular recall seems to be most benefited without compromising precision.
However, note that we are using a class-balanced set so that the baselines are all 50%. These
poor results of our recommender are probably due to the difficulty of the task at hand and the
simplicity of our model. Using more sophisticated attributes would probably enhance these
results.
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Table 5.3: Accuracy of retweet prediction

Classifier Expanded Encoding Accuracy Recall Precision F1 AUC

T
ru

st

NB
yes

bow 50.76 59.43 52.07 55.51 50.93
tf 52.38 58.99 52.52 55.57 52.58

no
bow 48.79 53.01 47.76 50.25 49.88
tf 51.97 50.49 50.60 50.44 51.51

SVM
yes

bow 45.84 61.00 30.22 40.42 50.53
tf 47.63 51.36 46.95 49.06 47.94

no
bow 46.25 68.42 32.47 44.04 50.00
tf 47.79 46.38 48.44 47.39 47.32

Averages 48.93 56.13 45.13 49.08 50.09

N
o

tr
u

st

NB
yes

bow 47.02 57.58 48.90 52.89 49.56
tf 51.13 49.56 54.81 52.05 52.22

no
bow 49.28 47.98 50.76 49.33 50.54
tf 46.12 45.18 45.84 45.51 46.28

SVM
yes

bow 45.22 55.83 27.05 36.44 50.06
tf 49.23 49.36 51.47 59.39 49.80

no
bow 43.40 34.87 17.59 23.38 50.22
tf 47.11 41.55 48.87 44.91 47.32

Averages 47.31 47.73 43.16 45.49 49.50
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Chapter 6

Conclusions and future work

In this Master’s Thesis we developed MarkovTrust, a model to estimate trust between users
based on users interactions. MarkovTrust is not actually a novel method, but an adaptation
of other well-known methods of trust propagation. We applied this trust model to Twitter
and studied some of its properties. To test the utility of MarkovTrust we developed a rec-
ommender system framework that first crawls the Twitter network following the top trusted
neighbors of our target users, and then makes tweet recommendations based both on past
retweets and estimated trust. Though not statistically sound due to lack of data, experiments
show that such a trust model does not respect the idea of transitivity of trust. However, rec-
ommendations are enhanced when using MarkovTrust which makes us think that the model
has some promise for trust-aware recommender systems.

In the next sections we detail the work done in this thesis and some opened questions and
future work.

6.1 Work done

These are the main contributions of this Thesis:

• a model to infer direct trust from Twitter interactions: We proposed a method to infer
trust from Twitter users’ interactions. We discussed about the nature of interactions
in Twitter (mentions, retweets, favorites and follows) and defined a way to map some
of these interactions into trust relations. We also implemented a method to propagate
this trust based on a random walk model.

• a recommender system prototype: We developed a recommender system prototype to
test the utility of our trust model as well as the utility of other implemented methods
that participate in the recommending process (e.g.: query expansion). This prototype
can be used as the basis for a more sophisticated recommender system of tweets. It
is possible to extend or modify the current modules of the recommender to test other
methods than the ones used in this Master’s Thesis.

• a trust-aware content-based recommender system: Trust-aware recommender systems
tend to combine trust with Collaborative Filtering methods. Collaborative Filtering
assumes a set of permanent items in the system that are rated by different users. Even
though most scenarios face the sparsity problem (most users only rate a small portion
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of items), the sparsity in our case is even worse. The volatility of tweets makes that
only a tiny portion gets retweeted by someone. Moreover, since we can only crawl a
small set of users, the probability to detect two users retweeting the same tweet is also
very low. This is why we disregarded the use of a collaborative filtering approach and
followed a content-based one that would analyze users’ tweets and retweets. To the best
of our knowledge, there is no previous work on trust-aware content-based recommender
systems. Trust is used here as a new feature that complements a more traditional set
of features extracted from the tweet (e.g.: bag-of-words).

• a trust-driven crawler : In order to optimize the set of users to monitor at every moment,
we developed a trust-driven crawler that uses updated trust information to focus the
crawling on the top trusted neighbors.

• benchmarking of methods: We did benchmark experiments to compare which combina-
tions of methods best performs in our recommender.

• analysis of trust properties: We explored some of the properties of trust and interactions
in Twitter and concluded, for instance, that there is no evidence of trust transitivity,
since our experiments do not give strong evidence for it in Twitter, but rather point
in the opposite. Transitivity is an important assumption in most trust propagation
methods. If this is confirmed by experimentation within a larger dataset, trust propa-
gation methods for Twitter -and maybe in other microblogging social networks- should
consider this particularity.

6.2 Future work

The work done in this Thesis has also opened a set of questions that could be explored in the
future:

• study of microblogging network properties and users behavior : An exhaustive study of
the statistics and patters of this kind of social networks could help to improve -or even
change- our trust metric. An first step in this path could be to analyze the marginal
contribution of retweets and mentions to trust accuracy. This can be done be repeating
the experiments using different weights in Equation 4.1. This study could also help to
best tune the parameters chose in our crawler (i.e.: number of top trusted users to crawl
according to how trust is distributed), and in our trust propagation method (i.e.: trust
decay and trust horizon).

• temporal dynamics: We stated in this thesis that some kind of temporal decay should
be applied, as tweets and interactions become obsolete when some time has passed. We
applied a decay factor to interactions, but we did not apply any decay factor to old
tweets.

• tweets ranking : Although, during our experiments, we implemented a basic ranker of
tweets by an SVM-rank to get an output of tweets ordered by the probability of being
retweeted by the target user, we could not test the accuracy of the ranking since it needs
to be done on a online test framework. If the online framework is developed, this final
module can be improved and other ranking methods can be proposed.
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• topic detection: In this Master’s Thesis we considered trust to be non-topic dependent.
However, its well known that trust is actually topic dependent. In order to take this
into account, a topic detection system should be developed for tweets. Different trusts
would then be computed in parallel, one for each topic.

• query expansion: There is still room for a further study of query expansion for tweets,
refining the proposed method or proposing novel ones such as adding synonyms of words.
Probably, using state of the art techniques of Natural Language Processing can help in
this issue.

• advanced text processing : Since we work with text items, the utilization of Natural
Language Processing techniques can be helpful. Part-of-speech tagging and parsing can
be used to extract verbs and nouns from tweets in order to use only these entities to
improve the results of query expansion based on search engines. Computing the semantic
distance between tweets can be done by Short Text Semantic Similarity (STSS) methods.
A basic model of Latent Semantic Analysis was implemented for the experiments, but
it did not give results worth mentioning. We think the number of available tweets was
not enough for LSA to improve the results of a simple bag-of-words representation.
Experiments with LSA in a bigger dataset should be repeated.

• online testing : For simplicity’s sake and lack of time, we used offline experiments to
test our system. However, recommender systems need to be tested online to have a
more precise information of the accuracy of their recommendations. An online testing
framework should be developed to get more significant conclusions. An intermediate
solution would be to make a user study under a controlled environment.
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